CLASSIFICATION OF WWII TANKS AND VEHICLES IMAGES FROM CONVOLUTIONAL NEURAL NETWORKS

Autores

  • Leonardo Lago Centro Universitário UNDB
  • Rodrigo Monteiro de Lima Centro Universitário UNDB
  • Allan Cruz Universidade Federal do Maranhão
  • Pamela Cruz Universidade de Coimbra

Palavras-chave:

Neural networks, Classification, Vehicles, Second World War

Resumo

This paper describes an analysis of the application and development of a Convolutional Neural Network (CNN) applied in the binary classification of World War II vehicle images, allowing the evaluation of the applied concepts, project feasibility and results obtained. Using a grayscale image base, with about 122 training images for the CNN and 15 images for validation, it was possible to identify an average hit rate of 86.666% among the tests performed, demonstrating that it is It is possible to use a CNN to classify images of WWII vehicles automatically with an acceptable degree of accuracy.

Referências

Ajit, A., Acharya, K., & Samanta, A. (2020). “A review of convolutional neural networks”. In 2020 international conference on emerging trends in information technology and engineering (ic-ETITE) (pp. 1-5). IEEE.

Braga, V., Lins, F., Soares, S., Et al. (2018) “Inteligência Artificial na Medicina”, 15ª Amostra de Saúde, XI Evento Científico, CIPEEX.

Emerson, R. V., (2018) “Um Estudo Comparativo Entre Redes Neurais Convolucionais Para Classificação de Imagens”, Universidade Federal do Ceará, Campus Quixadá.

GARDNER, H. (1995) “Inteligências Múltiplas: a teoria na prática”. Porto Alegre: Artes Médicas.

Jiajia, Z., Kun, S., Xing, L. (2018) “Small sample image recognition using improved Convolutional Neural Network”, Journal of Visual Communication and Image Representation, Volume 55, 2018, Pages 640-647, ISSN 1047-3203.

Ketkar, N., & Moolayil, J. (2021). “Convolutional neural networks”. In Deep Learning with Python" (pp. 197-242). Apress, Berkeley, CA.

L. Ye, Z. Cao and Y. Xiao (2017) "DeepCloud: Ground-Based Cloud Image Categorization Using Deep Convolutional Features," in IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 10, pp. 5729-5740, Oct. 2017, doi: 10.1109/TGRS.2017.2712809.

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. (1998) “Gradient-based learning applied to document recognition”. Proc. of the IEEE.

Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems.

Mcculloch, Warren S.; Pitts, Walter. (1943) “A logical calculus of the ideas immanent in nervous activity”. Bulletin of Mathematical Biophysics, Vol. 5, p. 115-133.

Minsky, M. (1985) “The Society of Mind”. New York, USA: Touchstone.

Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R. J., Fredes, C., & Valenzuela, A. (2020). “A review of convolutional neural network applied to fruit image processing”. Applied Sciences, 10(10), 3443.

Rodrigues, Diego (2018) “Deep Learning e Redes Neurais Convolucionais: reconhecimento automático de caracteres em placas de licenciamento automotivo”., Centro de Informática, João Pessoa, Universidade Federal da Paraíba.

Rodriguez, M., Pastor, F., & Ugarte, W. (2021). “Classification of fruit ripeness grades using a convolutional neural network and data augmentation”. In 2021 28th Conference of Open Innovations Association (FRUCT) (pp. 374-380). IEEE.

Rosenblatt, F. (1958) “The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain”. Psychological Review, Vol. 65, Nº 6, p. 386-408.

Tripathi, M. (2021). “Analysis of convolutional neural network-based image classification techniques”. Journal of Innovative Image Processing (JIIP), 3(02), 100-117.

Downloads

Publicado

2023-02-01

Como Citar

Lago, L., Lima, R. M. de, Cruz, A., & Cruz, P. (2023). CLASSIFICATION OF WWII TANKS AND VEHICLES IMAGES FROM CONVOLUTIONAL NEURAL NETWORKS. Revista De Estudos Multidisciplinares UNDB, 3(1). Recuperado de https://periodicos.undb.edu.br/index.php/rem/article/view/80

Edição

Seção

Artigos